Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.982
Filtrar
1.
Analyst ; 149(4): 1310-1317, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247383

RESUMO

RNA modification, particularly pseudouridine (Ψ), has played an important role in the development of the mRNA-based COVID-19 vaccine. This is because Ψ enhances RNA stability against nuclease activity and decreases the anti-RNA immune response. Ψ also provides structural flexibility to RNA by enhancing base stacking compared with canonical nucleobases. In this report, we demonstrate the first application of pseudouridine-modified RNA as a probe (Ψ-RNA) for label-free nucleic acid biosensing. It is known that MoS2 has a differential affinity for nucleic acids, which may be translated into a unique electronic signal. Herein, the Ψ-RNA probe interacts with the pristine MoS2 surface and causes a change in interfacial electrochemical charge transfer in the MoS2 nanosheets. Compared with an unmodified RNA probe, Ψ-RNA exhibited faster adsorption and higher affinity for MoS2. Moreover, Ψ-RNA could bind to complementary RNA and DNA targets with almost equal affinity when engaged with the MoS2 surface. Ψ-RNA maintained robust interactions with the MoS2 surface following the hybridization event, perhaps through its extra amino group. The detection sensitivity of the Ψ-RNA/MoS2 platform was as low as 500 attomoles, while the results also indicate that the probe can distinguish between complementary targets, single mismatches, and non-complementary nucleic acid sequences with statistical significance. This proof-of-concept study shows that the Ψ-RNA probe may solve numerous problems of adsorption-based biosensing platforms due to its stability and structural flexibility.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Pseudouridina/química , Sondas RNA , Molibdênio/química , Vacinas contra COVID-19 , RNA/química , Técnicas Biossensoriais/métodos
2.
Methods Mol Biol ; 2753: 543-551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285366

RESUMO

A commonly employed technique in molecular biology to evaluate the temporal and spatial expression of a certain gene is in situ hybridization. This method is an effective strategy to construct synexpression groups, co-expressed genes acting in shared biological processes, and to find new members of genes engaged in the same signaling pathways to discover similar spatial and temporal expression patterns in zebrafish embryos. The major disadvantage of this method is that RNA probes can penetrate within 2 days of post-fertilization embryos, and therefore, in later developmental stages, the probe can only reach the surface tissues. Further application of the method in histological sections will be required for a complete and accurate gene expression investigation. However, this method is highly effective at late embryogenesis and early larval stages for observing gene expression in endodermal derivatives and sensory organs. RNA probes for in situ hybridization can be prepared through in vitro transcription from plasmids carrying specific promoter elements and mRNA-specific cDNA, or an alternative polymerase chain reaction (PCR) method can be used through PCR amplification. This chapter describes the procedures for detecting gene expression in zebrafish embryos using whole-mount RNA in situ hybridization.


Assuntos
Perciformes , RNA , Animais , Sondas RNA , Peixe-Zebra/genética , RNA Mensageiro/genética , Hibridização In Situ
3.
ACS Nano ; 18(1): 436-450, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38149638

RESUMO

Rolling circle amplification (RCA) is one of the most promising nucleic acid detection technologies and has been widely used in the molecular diagnosis of disease. Padlock probes are often used to form circular templates, which are the core of RCA. However, RCA often suffers from insufficient specificity and sensitivity. Here we report a reconstruction strategy for conventional padlock probes to promote their overall performance in nucleic acid detection while maintaining probe functions uncompromised. When two rationally designed stem-loops were strategically placed at the two terminals of linear padlock probes, the specificity of target recognition was enhanced and the negative signal was significantly delayed. Our design achieved the best single-base discrimination compared with other structures and over a 1000-fold higher sensitivity than that of the conventional padlock probe, validating the effectiveness of this reconstruction. In addition, the underlying mechanisms of our design were elucidated through molecular dynamics simulations, and the versatility was validated with longer and shorter padlocks targeting the same target, as well as five additional targets (four miRNAs and dengue virus - 2 RNA mimic (DENV-2)). Finally, clinical applicability in multiplex detection was demonstrated by testing real plasma samples. Our exploration of the structures of nucleic acids provided another perspective for developing high-performance detection systems, improving the efficacy of practical detection strategies, and advancing clinical diagnostic research.


Assuntos
MicroRNAs , Técnicas de Amplificação de Ácido Nucleico , MicroRNAs/genética , MicroRNAs/química , Sondas RNA/química
4.
J Clin Lab Anal ; 37(19-20): e24977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37877443

RESUMO

BACKGROUND: Targeted next-generation sequencing (NGS) is a powerful and suitable approach to comprehensively identify multiple types of variants in tumors. RNA-based NGS is increasingly playing an important role in precision oncology. Both parallel and sequential DNA- and RNA-based approaches are expensive, burdensome, and have long turnaround times, which can be impractical in clinical practice. A streamlined, unified DNA- and RNA-based NGS approach is urgently needed in clinical practice. METHODS: A DNA/RNA co-hybrid capture sequencing (DRCC-Seq) approach was designed to capture pre-capture DNA and RNA libraries in a single tube and convert them into one NGS library. The performance of the DRCC-Seq approach was evaluated by a panel of reference standards and clinical samples. RESULTS: The average depth, DNA data ratio, capture ratio, and target coverage 250 (×) of the DNA panel data had a negative correlation with an increase in the proportion of RNA probes. The SNVs, indels, fusions, and MSI status were not affected by the proportion of RNA probes, but the copy numbers of the target genes were higher than expected in the standard materials, and many unexpected gene amplifications were found using D:R (1:2) and D:R (1:4) probe panels. The optimal ratio of DNA and RNA probes in the combined probe panel was 1:1 using the DRCC-Seq approach. The DRCC-Seq approach was feasible and reliable for detecting multiple types of variants in reference standards and real-world clinical samples. CONCLUSIONS: The DRCC-Seq approach is more cost-effective, with a shorter turnaround time and lower labor requirements than either parallel or sequential targeted DNA NGS and RNA NGS. It is feasible to identify multiple genetic variations at the DNA and RNA levels simultaneously in clinical practice.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Neoplasias/genética , RNA/genética , Sondas RNA , Medicina de Precisão , DNA , Sequenciamento de Nucleotídeos em Larga Escala
5.
Biosens Bioelectron ; 240: 115645, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660462

RESUMO

N6-methyladenosine (m6A) is an ubiquitous post-transcriptional modification catalyzed by METTL3/14 complex in eukaryotic mRNAs. The abnormal METTL3/14 complex activity affects multiple steps of RNA metabolism and may induce various diseases. Herein, we demonstrate the RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues. METTL3/14 complex can catalyze the methylation of RNA probe to prevent it from being cleaved by MazF. The intact RNA probe is recognized by the magnetic bead (MB)-capture probe conjugates to induce duplex-specific nuclease (DSN)-assisted cyclic digestion, exposing numerous shorter ssDNAs with 3'-OH end. The shorter ssDNAs on the MB surface can act as the primers to initiate terminal deoxynucleotidyl transferase (TdT)-enhanced tyramide signal amplification (TSA), forming the Cy5 fluorescence-encoded nanostructures. After magnetic separation, the Cy5 fluorescence-encoded nanostructures are digested by DNase I to release abundant Cy5 fluorophores that can be simply quantified by fluorescence measurement. This assay achieves good specificity and high sensitivity with a detection limit of 58.8 aM, and it can screen METTL3/14 complex inhibitors and quantify METTL3/14 complex activity at the single-cell level. Furthermore, this assay can differentiate the METTL3/14 complex level in breast cancer patient tissues and healthy volunteer tissues.


Assuntos
Técnicas Biossensoriais , Humanos , Metilação , Sondas RNA , RNA , DNA Nucleotidilexotransferase , DNA de Cadeia Simples , Metiltransferases/genética
6.
Anal Chem ; 95(35): 13201-13210, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37603851

RESUMO

N6-Methyladenosine (m6A) demethylases can catalyze the removal of the methyl modification on m6A, and it is closely associated with the occurrence, proliferation, differentiation, and metastasis of malignancies. The m6A demethylases (e.g., fat mass and obesity-associated protein (FTO)) may act as a cancer biomarker and are crucial for anticancer drug screening and early clinical diagnosis. Herein, we demonstrate the construction of a quantum-dot-based Förster resonance energy-transfer (FRET) nanosensor through direct encoding of streptavidin-binding RNA aptamers (SA aptamers) for m6A demethylase detection. This nanosensor employs multiple Cy5-molecule-labeled SA aptamers as the building materials to construct the 605QD-RNA-Cy5 nanoassembly, and it exploits the hinder effect of m6A upon elongation and ligation reactions to distinguish m6A-containing RNA probes from demethylated RNA probes. When m6A demethylase is present, the m6A-containing RNA probes are demethylated to generate the demethylated RNA probes, initiating strand extension and ligation reactions to yield a complete transcription template for SA aptamers. Subsequently, a T7-assisted cascade transcription amplification reaction is activated to transcribe abundant SA aptamers with the incorporation of multiple Cy5 fluorophores. The Cy5-incorporated SA aptamers can self-assembly onto the streptavidin-coated 605QD surface to obtain the 605QD-SA aptamer-Cy5 nanoassemblies, resulting in the generation of distinct FRET signals. This nanosensor exhibits ultrahigh sensitivity and excellent specificity, and it can detect endogenous FTO at the single-cell level. Furthermore, this nanosensor can precisely measure enzyme kinetic parameters, screen m6A demethylase inhibitors, and differentiate the FTO expression between breast cancer patients and healthy individual tissues, offering a versatile platform for clinical diagnostic and drug discovery.


Assuntos
Aptâmeros de Nucleotídeos , Humanos , Estreptavidina , Transferência Ressonante de Energia de Fluorescência , Sondas RNA , Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
7.
Methods Mol Biol ; 2686: 331-350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540368

RESUMO

RNA in situ hybridization offers a means to study the spatial expression of candidate genes by making use of specific, labelled RNA probes on thin tissue sections. Unlike other methods, such as promoter GUS fusions, for which all regulatory sequences should be available and transgenic plants have to be generated, RNA in situ hybridization allows specific and direct detection of even low abundant transcripts at cellular resolution. Although various protocols exist, the results published throughout the literature indicate a very obvious problem of the technique: each step has the potential to affect the outcome, that is, the signal strength, presence or absence of background, and visibility of individual cells. The protocol described here tries to avoid all these problems by addressing each step in detail and providing advice regarding critical steps for a distinct visualization of gene expression on intact tissue sections without any background.


Assuntos
Microtomia , RNA , Hibridização In Situ , Plantas Geneticamente Modificadas/genética , Sondas RNA/genética
8.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298974

RESUMO

A new series of 4H-1,3-benzothiazine dyes were prepared and fully characterized in an aqueous medium. Benzothiazine salts were synthesized either through the classical synthetic pathway using Buchwald-Hartwig amination or through economical and environmentally friendly electrochemical synthesis. The latest synthetic approach employs successful electrochemical intramolecular dehydrogenative cyclization of N-benzylbenzenecarbothioamides to form 4H-1,3-benzothiazines. 4H-1,3-Benzothiazines were evaluated as novel DNA/RNA probes. Through the use of several methods such as UV/vis spectrophotometric titrations, circular dichroism and thermal melting experiments, the binding of four benzothiazine-based molecules to polynucleotides was examined. Compounds 1 and 2 acted as DNA/RNA groove binders, thus suggesting the potential of these compounds as novel DNA/RNA probes. This is a proof-of-concept study and will be expanded to include SAR/QSAR studies.


Assuntos
Corantes , DNA , Sondas RNA , DNA/química , Dicroísmo Circular
9.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175596

RESUMO

Chemical probing, for decades, has been one of the most popular tools for studying the secondary structure of RNA molecules. Recently, protocols for simultaneous analysis of multiple RNAs have been developed, enabling in vivo transcriptome-wide interrogation of the RNA structure dynamics. One of the most popular methods is the selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP). In this study, we describe the evaluation of this protocol by addressing the influence of the reverse transcription enzymes, buffer conditions, and chemical probes on the properties of the cDNA library and the quality of mutational profiling-derived structural signals. Our results reveal a SuperScript IV (SSIV) reverse transcriptase as a more efficient enzyme for mutational profiling of SHAPE adducts and shed new light on the role of Mn2+ cations in the modulation of SSIV readthrough efficiency.


Assuntos
RNA , Transcrição Reversa , Sondas RNA/química , RNA/metabolismo , DNA Polimerase Dirigida por RNA , Conformação de Ácido Nucleico , Acilação
10.
Angew Chem Int Ed Engl ; 62(7): e202213764, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36533569

RESUMO

Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.


Assuntos
Nucleotídeos , RNA , Nucleotídeos/metabolismo , Sondas RNA , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Ligação a RNA , Reagentes de Ligações Cruzadas
11.
Dev Growth Differ ; 65(1): 48-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36517457

RESUMO

Myosin heavy chains (MyHCs), which are encoded by myosin heavy chain (Myh) genes, are the most abundant proteins in myofiber. Among the 11 sarcomeric Myh isoform genes in the mammalian genome, seven are mainly expressed in skeletal muscle. Myh genes/MyHC proteins share a common role as force producing units with highly conserved sequences, but have distinct spatio-temporal expression patterns. As such, the expression patterns of Myh genes/MyHC proteins are considered as molecular signatures of specific fiber types or the regenerative status of mammalian skeletal muscles. Immunohistochemistry is widely used for identifying MyHC expression patterns; however, this method is costly and is not ideal for whole-mount samples, such as embryos. In situ hybridization (ISH) is another versatile method for the analysis of gene expression, but is not commonly applied for Myh genes, partly because of the highly homologous sequences of Myh genes. Here we demonstrate that an ISH analysis with the untranslated region (UTR) sequence of Myh genes is cost-effective and specific method for analyzing the Myh gene expression in whole-mount samples. Digoxigenin (DIG)-labeled antisense probes for UTR sequences, but not for protein coding sequences, specifically detected the expression patterns of respective Myh isoform genes in both embryo and adult skeletal muscle tissues. UTR probes also revealed the isoform gene-specific polarized localization of Myh mRNAs in embryonic myofibers, which implied a novel mRNA distribution mechanism. Our data suggested that the DIG-labeled UTR probe is a cost-effective and versatile method to specifically detect skeletal muscle Myh genes in a whole-mount analysis.


Assuntos
Cadeias Pesadas de Miosina , RNA , Animais , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Sondas RNA/metabolismo , Digoxigenina/metabolismo , Regiões não Traduzidas , Músculo Esquelético/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Mamíferos/metabolismo
12.
Methods Mol Biol ; 2568: 37-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227561

RESUMO

Riboswitches are a class of RNA motifs in the untranslated regions of bacterial messenger RNAs (mRNAs) that can adopt different conformations to regulate gene expression. The binding of specific small molecule or ion ligands, or other RNAs, influences the conformation the riboswitch adopts. Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) offers an approach for probing this structural isomerization, or conformational switching, at the level of single mRNA molecules. SiM-KARTS utilizes fluorescently labeled, short, sequence-complementary DNA or RNA oligonucleotide probes that transiently access a specific RNA conformation over another. Binding and dissociation to a surface-immobilized target RNA of arbitrary length are monitored by Total Internal Reflection Fluorescence Microscopy (TIRFM) and quantitatively analyzed, via spike train and burst detection, to elucidate the rate constants of isomerization, revealing mechanistic insights into riboswitching.


Assuntos
Riboswitch , DNA Complementar , Cinética , Ligantes , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos , Sondas RNA , RNA Bacteriano/metabolismo
13.
Chem Asian J ; 17(24): e202201077, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36321802

RESUMO

Protein synthesis via ribosomes is a fundamental process in all known living organisms. However, it can be completely stalled by removing a single nucleobase (depurination) at the sarcin/ricin loop of the ribosomal RNA. In this work, we describe the preparation and optimization process of a fluorescent probe that can be used to visualize depurination. Starting from a fluorescent thiophene nucleobase analog, various RNA probes that fluoresce exclusively in the presence of a depurinated sarcin/ricin-loop RNA were designed and characterized. The main challenge in this process was to obtain a high fluorescence signal in the hybridized state with an abasic RNA strand, while keeping the background fluorescence low. With our new RNA probes, the fluorescence intensity and lifetime can be used for efficient monitoring of depurinated RNA.


Assuntos
Ricina , Ricina/metabolismo , Sondas RNA , RNA , Fluorescência , Purinas/metabolismo
14.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296519

RESUMO

RNA imaging is of great importance for understanding its complex spatiotemporal dynamics and cellular functions. Considerable effort has been devoted to the development of small-molecule fluorescent probes for RNA imaging. However, most of the reported studies have mainly focused on improving the photostability, permeability, long emission wavelength, and compatibility with live-cell imaging of RNA probes. Less attention has been paid to the selectivity and detection limit of this class of probes. Highly selective and sensitive RNA probes are still rarely available. In this study, a new set of styryl probes were designed and synthesized, with the aim of upgrading the detection limit and maintaining the selectivity of a lead probe QUID-1 for RNA. Among these newly synthesized compounds, QUID-2 was the most promising candidate. The limit of detection (LOD) value of QUID-2 for the RNA was up to 1.8 ng/mL in solution. This property was significantly improved in comparison with that of QUID-1. Further spectroscopy and cell imaging studies demonstrated the advantages of QUID-2 over a commercially available RNA staining probe, SYTO RNASelect, for highly selective and sensitive RNA imaging. In addition, QUID-2 exhibited excellent photostability and low cytotoxicity. Using QUID-2, the global dynamics of RNA were revealed in live cells. More importantly, QUID-2 was found to be potentially applicable for detecting RNA granules in live cells. Collectively, our work provides an ideal probe for RNA imaging. We anticipate that this powerful tool may create new opportunities to investigate the underlying roles of RNA and RNA granules in live cells.


Assuntos
Corantes Fluorescentes , RNA , Corantes Fluorescentes/química , Sondas RNA , Imagem Molecular
15.
Anal Methods ; 14(43): 4418-4425, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36300422

RESUMO

Mercury contamination is a major environmental concern. In this work, we used a cleavable phosphorothioate (PS) fluorescence probe quenched by UiO-66-NH2 to develop a "signal-on" fluorescent biosensor for Hg2+ detection. The probe was bound to UiO-66-NH2 through π-π stacking and hydrogen bonding, thereby extinguishing the fluorescence of the FAM-labelled probe. The PS site was cleaved in the presence of Hg2+, releasing the FAM group and significantly enhancing the fluorescence signal. The intensity of the fluorescence linearly rose as the Hg2+ concentration increased in the range of 1-100 nM (R2 = 0.994), and the limit of detection was 0.118 nM (S/N = 3). This biosensor demonstrated high selectivity for Hg2+ and was effectively applied to quantification of Hg2+ in various water samples with acceptable recovery rates. These results suggest that this practical, straightforward technology is a good option for monitoring mercury ions in the environment.


Assuntos
Técnicas Biossensoriais , Mercúrio , Estruturas Metalorgânicas , Corantes Fluorescentes , RNA , Sondas RNA , Técnicas Biossensoriais/métodos
16.
Environ Pollut ; 313: 120192, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126767

RESUMO

Bioaugmentation is an effective approach for removing pyrene from contaminated sites, and its performance is enhanced by a biosurfactant. To reveal the mechanisms of biosurfactant-assisted bioaugmentation, we introduced RNA stable isotope probing (RNA-SIP) in the pyrene-contaminated soils and explored the impacts of rhamnolipid on the pyrene degradation process. After 12-day degradation, residual pyrene was the lowest in the bioaugmentation treatment (7.76 ± 1.57%), followed by biosurfactant-assisted bioaugmentation (9.86 ± 2.58%) and enhanced natural attenuation (23.97 ± 1.05%). Thirteen well-known and two novel pyrene-degrading bacteria were confirmed to participate in the pyrene degradation. Pyrene degradation was accelerated in the biosurfactant-assisted bioaugmentation, manifested by the high diversity of active pyrene degraders. Our findings expand the knowledge on pyrene degrading bacteria and the mechanisms of pyrene degradation in a bioaugmentation process.


Assuntos
Microbiologia do Solo , Poluentes do Solo , Bactérias/metabolismo , Biodegradação Ambiental , Isótopos/metabolismo , Pirenos/metabolismo , RNA/metabolismo , Sondas RNA/metabolismo , Solo , Poluentes do Solo/análise
17.
J Vet Diagn Invest ; 34(6): 1023-1026, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36171733

RESUMO

We made 2 Z-based in situ hybridization (ISH) probes for the detection of rabbit hemorrhagic disease virus 2 (RHDV2; Lagovirus GI.2) nucleic acid in formalin-fixed, paraffin-embedded tissues from European rabbits (Oryctolagus cuniculus) that had died during an outbreak of RHD in Washington, USA. One probe system was made for detection of negative-sense RNA (i.e., the replicative intermediate RNA for the virus), and the other probe system was constructed for detection of genomic and mRNA of the virus (viral mRNA). Tissue sets were tested separately, and the viral mRNA probe system highlighted much broader tissue distribution than that of the replicative intermediate RNA probe system. The latter was limited to liver, lung, kidney, spleen, myocardium, and occasional endothelial staining, whereas signal for the viral mRNA was seen in many more tissues. The difference in distribution suggests that innate phagocytic activity of various cell types may cause overestimation of viral replication sites when utilizing ISH of single-stranded, positive-sense viruses.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/genética , Inclusão em Parafina/veterinária , Sondas RNA , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Hibridização In Situ/veterinária , Replicação Viral , Formaldeído , RNA , RNA Mensageiro/genética
18.
Nat Commun ; 13(1): 4227, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869080

RESUMO

RNAs perform their function by forming specific structures, which can change across cellular conditions. Structure probing experiments combined with next generation sequencing technology have enabled transcriptome-wide analysis of RNA secondary structure in various cellular conditions. Differential analysis of structure probing data in different conditions can reveal the RNA structurally variable regions (SVRs), which is important for understanding RNA functions. Here, we propose DiffScan, a computational framework for normalization and differential analysis of structure probing data in high resolution. DiffScan preprocesses structure probing datasets to remove systematic bias, and then scans the transcripts to identify SVRs and adaptively determines their lengths and locations. The proposed approach is compatible with most structure probing platforms (e.g., icSHAPE, DMS-seq). When evaluated with simulated and benchmark datasets, DiffScan identifies structurally variable regions at nucleotide resolution, with substantial improvement in accuracy compared with existing SVR detection methods. Moreover, the improvement is robust when tested in multiple structure probing platforms. Application of DiffScan in a dataset of multi-subcellular RNA structurome and a subsequent motif enrichment analysis suggest potential links of RNA structural variation and mRNA abundance, possibly mediated by RNA binding proteins such as the serine/arginine rich splicing factors. This work provides an effective tool for differential analysis of RNA secondary structure, reinforcing the power of structure probing experiments in deciphering the dynamic RNA structurome.


Assuntos
Nucleotídeos , RNA , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação de Ácido Nucleico , RNA/metabolismo , Sondas RNA , Análise de Sequência de RNA/métodos
19.
Methods Mol Biol ; 2518: 291-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35666452

RESUMO

Cotranscriptional folding is a fundamental step in RNA biogenesis and the basis for many RNA-mediated gene regulation systems. Understanding how RNA folds as it is synthesized requires experimental methods that can systematically identify intermediate RNA structures that form during transcription. Cotranscriptional RNA chemical probing experiments achieve this by applying high-throughput RNA structure probing to an in vitro transcribed array of cotranscriptionally folded intermediate transcripts. In this chapter, we present guidelines and procedures for integrating single-round in vitro transcription using E. coli RNA polymerase with high-throughput RNA chemical probing workflows. We provide an overview of key concepts including DNA template design, transcription roadblocking strategies, single-round in vitro transcription with E. coli RNA polymerase, and RNA chemical probing and describe procedures for DNA template preparation, cotranscriptional RNA chemical probing, RNA purification, and 3' adapter ligation. The end result of these procedures is a purified RNA library that can be prepared for Illumina sequencing using established high-throughput RNA structure probing library construction strategies.


Assuntos
Dobramento de RNA , RNA , DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/química , Escherichia coli/genética , RNA/química , RNA/genética , Sondas RNA , Análise de Sequência de RNA , Transcrição Gênica
20.
ACS Chem Biol ; 17(6): 1556-1566, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35594415

RESUMO

Discoveries of RNA roles in cellular physiology and pathology are increasing the need for new tools that modulate the structure and function of these biomolecules, and small molecules are proving useful. In 2017, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND) and discovered distinguishing physicochemical properties of RNA-targeting ligands, leading us to propose the existence of an "RNA-privileged" chemical space. Biennial updates of the database and the establishment of a website platform (rbind.chem.duke.edu) have provided new insights and tools to design small molecules based on the analyzed physicochemical and spatial properties. In this report and R-BIND 2.0 update, we refined the curation approach and ligand classification system as well as conducted analyses of RNA structure elements for the first time to identify new targeting strategies. Specifically, we curated and analyzed RNA target structural motifs to determine the properties of small molecules that may confer selectivity for distinct RNA secondary and tertiary structures. Additionally, we collected sequences of target structures and incorporated an RNA structure search algorithm into the website that outputs small molecules targeting similar motifs without a priori secondary structure knowledge. Cheminformatic analyses revealed that, despite the 50% increase in small molecule library size, the distinguishing properties of R-BIND ligands remained significantly different from that of proteins and are therefore still relevant to RNA-targeted probe discovery. Combined, we expect these novel insights and website features to enable the rational design of RNA-targeted ligands and to serve as a resource and inspiration for a variety of scientists interested in RNA targeting.


Assuntos
RNA , Bibliotecas de Moléculas Pequenas , Bases de Dados de Ácidos Nucleicos , Ligantes , RNA/metabolismo , Sondas RNA , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...